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The method of matched asymptotic expansions is applied to several long-wave 
problems including the scattering of acoustic waves by a grating of cylinders and the 
scattering of water waves incident on horizontal cylinders. It is shown that a na’ive 
application of the method can lead to incorrect results. A modified expansion 
procedure is developed and applied to a number of problems. 

1. Introduction 
The method of matched asymptotic expansions has been used to  treat a number 

of interesting problems, involving interaction of waves and obstacles ; see e.g. Tuck 
(1975). In  the simplest problems, there are two lengthscales, namely a wavelength h 
and a typical diameter of the obstacles d ; here we assume that d 4 A. Such problems 
are well understood. Suppose now that the obstacles have two lengthscales. A 
prototypical example is a grating, composed of an infinite row of identical equally 
spaced cylinders. Lamb (1898, 1932, $307) considered the scattering of long acoustic 
waves by a grating of small circular cylinders ; more precisely, with wavenumber 
k = 27c/h, spacing 2h and diameter 2a, he assumed that kh + 1 and alh 4 1. He used 
a method similar to that of matched asymptotic expansions and obtained a simple 
formula for the reflection coefficient (see $2.1 below). Later he use his method to 
derive a formula for the wavelength of the fundamental (antisymmetric) standing 
wave in a long rectangular tank containing a small vertical cylinder a t  its centre, and 
verified his result experimentally (Lamb & Cook 1910). 

Lamb’s method is simple and has been used widely. Moreover, it is not limited to 
small circular cylinders; the essential assumption is that kh 4 1. However, it  has 
been known for thirty years that Lamb’s formula for the reflection coefficient for 
waves at normal incidence to a grating of small circular cylinders is incorrect 
(Twersky 1956, 1962). In  the present paper, we show how to modify Lamb’s method 
so as to obtain the correct result. 

The experiment of Lamb & Cook exploits the analogy between two-dimensional 
acoustics and three-dimensional water waves. Thus, for water-wave scattering by a 
row of vertical cylinders, we can separate out the dependence on depth, leaving a 
grating problem in the horizontal plane. This water-wave problem has been studied 
for several reasons, for example to elucidate the behaviour of waves near a pile- 
supported offshore structure or to examine the use of a row of piles for a breakwater, 
with the reflection of the waves being an important phenomenon. For circular 
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cylinders, Twersky (1956, 1962), Spring & Monkmeyer (1975), Miles (1983) and 
others provide means for calculating the wave field for waves in any depth. Here we 
examine long waves incident on a pile array, neglecting dissipation by turbulence 
and flow separation around the piles (see Hayashi, Kano & Shirai 1966, for the case 
of narrowly spaced piles). 

The method of matched asymptotic expansions has also been used to treat the 
interaction of shallow-water waves with horizontal cylinders. Guiney, Noye & Tuck 
(1972) consider scattering by a fixed cylinder in the free surface. They also examine 
a submerged ridge, as does Tuck (1977), whereas Miles (19823) considers a trench. All 
of these authors’ results can be put into the form of Lamb’s formula. We again 
modify Lamb’s method and show that his result is correct for submerged ridges and 
trenches, but not for surface-piercing cylinders. 

In the next section we discuss the case of acoustic waves incident on a grating. This 
problem is equivalent to water-wave scattering by a row of vertical cylinders (or to 
a single cylinder on the centreline of a wave tank). Lamb’s solution is reviewed and 
the modified matched asymptotic expansion is presented, giving new approximations 
for the reflection and transmission coefficients. These approximations are compared 
to Twersky’s exact solution and with Miles’s ( 1 9 8 2 ~ )  solution for small cylinders. 

In 3 4, we consider the scattering of shallow-water waves by horizontal cylinders. 
Again, we obtain new approximations for the reflection and transmission coefficients 
and compare them with known solutions. 

An important parameter in our approximations is the blockage coefficient 1 for the 
potential flow past an obstacle in a channel. Several new results for 1 are obtained 
in our analyses. For large circular cylinders (a /h  < 0.5)’ we use a conformal mapping 
due to Richmond (1923) and, for small cylinders, we obtain 1 in terms of the added 
mass of a single cylinder translating in an unbounded stationary fluid. 

2. Gratings and waveguides 
We shall first treat the diffraction of acoustic waves by an infinite row of equally 

spaced identical cylinders immersed in a compressible fluid. The cylinders will be 
assumed to be symmetric about two lines, one of which is the y-axis. An example of 
such a grating of cylinders would be a line of circular cylinders with their centres at 
y = & 2nh for n = 0 , 1 , 2 ,  . . . , or elliptical cylinders with their major (or minor) axes 
along the y-axis. 

A plane sound wave is normally incident upon the grating of cylinders ; its velocity 
potential is Re{qP(x, y) e-iwt}, where Re denotes the real part, with 

$in(x,y) = eikx. ( 1 )  

(Henceforth we shall suppress the time dependence.) The incident wave is 
propagating in the positive x-direction, with wavelength 2n/k  and radian frequency 
w .  The governing equation for the (total) velocity potential $(x,y) within the fluid 
surrounding the cylinders is the Helmholtz equation : 

(2) ( V z + k 2 ) $  = $,,+$,,+kZq3 = 0. 

On each cylinder within the grating there is a no-flow condition 
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where the subscript n denotes a normal derivative, directed into the fluid. In  
addition, the scattered potential 

p $-$in (4) 

must satisfy a radiation condition as 1x1 + CO. 

This acoustics problem for $ ( x , y )  is directly analogous to the problem of water- 
wave scattering by a row of identical vertical cylinders, piercing the horizontal 
bottom and the free surface. (The case of horizontal cylinders in shallow water will 
be discussed in $4.) 

The radiation condition can be stated explicitly in terms of both $ and p: 

or 

as x+co, ’ - {:::R e-ikx as x+-co 

(T - 1) eikx as x +  co, 

asx+-co. 

Here, R and T are the (complex) reflection and transmission coefficients, 
respectively. Energy and reciprocity considerations imply that R and T must satisfy 
(see e.g. Twersky 1962, equation 38) 

and 

JR12+JT)2 = 1 

RT* + R*T = 0, 

where the asterisk denotes the complex conjugate, and the symmetry of the cylinders 
about the y-axis has been used to obtain the last equation. These equations are 
equivalent to 

IR+TI = 1 (9) 

and (R-TI = 1. (10) 

Utilizing the symmetry of this problem, we can reduce i t  to a waveguide problem, 
with two rigid parallel walls, one a t  y = 0 and the other at. y = h. A symmetric 
protrusion r o f  width 2b, is situated on one of these walls, say y = 0;  the finite region 
bounded by r and y = 0 is denoted by D-. (Note that r can be a depression, i.e. r 
can be in the region y < 0.) This waveguide problem is equivalent to the scattering 
of the ‘dominant ’ TE (or H l o )  mode by a capacitive post in a rectangular waveguide ; 
for small circular posts, see e.g. Lewin (1951, $2.3; 1975, 55.3) and Marcuvitz (1951, 
55.13). 

2.1. Lamb’s method 
Lamb (1898, 1932, $307) has described a method for solving these problems for the 
case of small circular cylinders. He begins by assuming that $ can be expressed as 

and 

Here, D, are constants and 
mn 
h - - 7  
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m 

$, z l+R+ikx( l -R) -  Z D, emnrlh c o s r ~ )  for x < 0. (14) 

Lamb then examined a related problem for potential flow, using the same 

m-1 

geometry : 
V2$., = 0 in the fluid, (15) 

(16) = 0 on the boundaries, 

This corresponds to a uniform flow past circular cylinders, with unit flux a t  1x1 = co. 
For small cylinders, the solution to this problem (to within an arbitrary additive 
constant) is given approximately by Lamb (1932, $64) as 

X sinh ( x x l h )  
$, = -+C 

h cash ( n ~ / h )  - cos ( x y / h )  

where go  = 1, em = 2 for m > 0, and 
2 

c = (i) 
Comparing this potential to (13) and (14), we see, for small klzl, that 

d =A(r,+B, (21) 

provided that we choose A and B such that 

(22) 
A A 
h h 

T = A C + B ,  ileT=-, 1 + R = - A C + B ,  ik(1-R)=-- ,  

and D, = 2AC for m = 1,2, ... . Solving these equations yields AC = -R, B = 1 
and 

(23) 

where we have defined 1 by 1 = Ch. (24) 

R + T  = 1. (25) 

1 T = -  
1 -ikl’ l - i k l ’  

ik1 R = - -  

These formulae for R and T satisfy the energy conditions (7)-( 10) identically ; in fact 
they satisfy 

Lamb’s method is a form of matched asymptotic expansion. The assumed solutions 
( l l ) ,  (12) are the outer solutions which satisfy the Helmholtz equation (2), the 
radiation condition, and the boundary conditions on the flat walls, but do not satisfy 
the boundary condition on the protrusion r. On the other hand, $, is an inner 
solution that satisfies all the boundary conditions and Laplace’s equation, which is 
a reasonable approximation to the Helmholtz equation for small kh and for I\: = O(h) ,  
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y = O(h).  Then we see that Lamb matches these two solutions at x = + X ,  where 
kX 4 kh 4 1 (or kX+0 and X/h+0).  

If we match further away from the cylinder, so that kh 4 kX 4 1 (or kX + 0, but 
X / h +  CO), then the evanescent terms in ( 1 1 )  and (12) can be discarded. Thus, we 
have 

T eikx for x > 0, 

for x < 0. ’ = { eikx + R e-ikx 

For small klxJ, these give 
IT + ikxT, x > 0, ’ - I l+R+ikx( l -R) ,  x < 0. 

This is the inner expansion of the outer solution. The inner solution is supposed to 
be 

@ = A$,+ B,  (29) 

as in (21). Its outer expansion is 
A 1x1 @ N (x+Z sgnx) -+B as -+ 00, 
h h 

since h$,-x+Isgnx as ~ x ~ + c o .  (31) 

We see that (30) and (28) agree if R, T, A and B satisfy the same equations as before, 
namely (22) and (24), leading to the same formulae, (23), for R and T .  

The result (31) holds for uniform flow past any protrusion or depression r. The 
parameter 1 is called the blockage coeficient; it depends on the shape of r and the 
width of the strip h, and it can be computed numerically or analytically (for a more 
complete discussion, see Tuck 1975, $V).  We note that with this modified matching 
procedure, we do not need to know explicitly in order to find R and T ;  it is 
sufficient to know the blockage coefficient, as defined by (31). Moreover, we do not 
assume that r is small; it is sufficient that the diameter of r be O(h). 

For small kl ,  (23) gives 
R - -ikl, T - 1+ikl.  

In particular, for small circular cylinders, we can use (20) and (24) to give 

inka2 inka2 R--- T-1+- 
2h ’ 2h ‘ 

(33) 

Kakuno (1983) applied Lamb’s method to the scattering of water waves by a 
grating. His results, for circular and rectangular cylinders, can be written in Lamb’s 
form, (23). 

Using either of the two matching procedures above, however, gives incorrect 
results! For circular cylinders, the exact solution has been given by Twersky (1956, 
1962). (Burke & Twersky 1966 have also solved the problem of plane waves obliquely 
incident on a grating of elliptical cylinders.) His results (1962, eq. 120) are 

3ixka2 inka2 R--- T - l + -  
4h ’ 4h ‘ 

(34) 

These approximations were also obtained, using different methods, by Marcuvitz 
(1951) and Lewin (1951, 1975) ; a somewhat simplified version of Lewin’s ‘multiplet 
theory ’ is described in Appendix A. 

Exact solutions for + are not available for arbitrary geometries. Therefore it is 
worthwhile to develop a correct matching procedure. 
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2.2 Modijed matching procedure 

We begin by separating the inner problem into two simpler problems, one 
symmetric about x = 0, and one antisymmetric. Thus we can write 

$ = $,+$,, p = $F++F, p = $t+$?, (35) 

where e.g. $a = !i[$(x,y)-@(-x,~)I (36) 

and #, = Wtz, y) + $( -x, Y l l  (37) 

4: = cos kx, I$? = i sin kx. (38) 

(39) 

R = D,-D,, T-1 = D,+D,. (40) 

are antisymmetric and symmetric, respectively, about x = 0. From (1)’ we have 

In  the outer region, we write 

$? = D, eiklzl, $r = D, sgn x eiklzl, 

where D, and D, are constants. Comparing with (6), we see that 

(Note that if the condition (25) on R and T, arising from Lamb’s method, is satisfied, 
then D, must vanish, i.e. no symmetrical wave-like disturbance is permissible. This 
would be reasonable if the forcing were purely antisymmetric, as in the laboratory 
experiment conducted by Lamb & Cook (1910). It is also true when f is a thin 
barrier, i.e. when the grating is composed of a periodic row of apertures in a rigid 
screen along the y-axis.) 

The inner expansions of the outer solutions, (38) and (39), are 

$,= q5F++t - D,sgnx+(i+D,)ikx (41) 

and 9, = $:+$?- (1+D, )+ ik lx lD , -~ (1+D, )k2x2  (42) 

as klxl+O. We shall determine D, by matching with +,, the inner solution from 
before. Note that, for D,, we need three terms in (42), as explained later. 

2.2.1. Determination of D, 
For an inner solution, we want an antisymmetric function @, that satisfies all the 

boundary conditions and the differential equation (2) approximately for small kh. 
The harmonic function $,, used earlier, satisfies this requirement and so we write 

@a = Aa$a(X, Y),  (43) 

where A, is a constant to be determined. There is no additive constant in this solution 
since a constant would be symmetric. The outer expansion of @a is given by 

(x+l  sgnx)A, 
h @a - 1 

where we have used (31). Matching (41) and (44) gives 

whence 

A 1  A 
D a = l ,  h ( 1 + D a ) i k = 2  h ’  

ikh 
A,=- 

ikl D, = ~- 
1-ikl’ 1 -ikZ* 

(44) 

(45) 
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2.2.2.  Determination of D,  

a 
Ic. 

By analogy with the antisymmetric problem, we are encouraged to look for 
symmetric harmonic function @, which satisfies the boundary conditions and 
x2 / (2h2)  as 1x1 + co. However, a simple application of Green’s theorem shows that 

this problem has no solution, as there is fluid flowing outwards in both directions, 
yet there are no sources. 

Instead, let us assume that we can write our symmetric inner solution as 

@, =A,* ,+& 147) 

where A ,  and B are constants to be determined. Substituting @, into ( 2 )  gives 

B 
h2V2ks + (kh)2 $, + (kh)2 - = 0. 

AS 

For kh G 1, we may discard the middle term in this equation, but not necessarily the 
last term, involving the constant B, since BIAS will be a function of kh. Indeed, a 
posteriori, we show that A ,  = O((kh)2 )  as kh+O; see (62 ) .  So without loss of 
generality, we require $s to satisfy the Poisson equation 

h2V2$, = 1 in the fluid, (49) 

(50) ($s)n = 0 on the boundaries, 

It is convenient to set 

where xs is a harmonic function, which satisfies the following conditions : 

( x , ) ~  = - (%) X 2  on the boundaries, 

n 
(53) 

(54) 
x , - M ~ + o ( l )  1x1 as Ix)+-co.  

The condition (54) ensures uniqueness by eliminating arbitrary additive constants. 
Physically, x, corresponds to fluid flowing into the domain from both infinities with 
flux (MI, and then flowing out through the boundary r a s  the outflow vanishes on the 
other boundaries. Conservation of mass (using Green’s theorem) implies that 

2Y=/r(~s)nds=-/r(1) 2h2 12 ds 

S 

(55)  

where S is the cross-sectional area of the protrusion r (i.e. the area of D-) .  
Therefore. 

S M = - -  
2h2’ (57) 
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If r is a depression, we obtain s 
2h2 

M = -  

after proper consideration of the normal directions. These results, (57)  and (58), are 
exact. 

The outer expansion of dj,, (47) ,  is 

where m is defined as 

Matching (59) and (42)  gives 

m = Mh. 

which yields 

(l+D,) = B, 
mA 

i k D , = A ,  - 
h2 

A 
.$(l+D,)k2 = S, 2h2 

(The coefficient A ,  is small, O((kh)2 ) ,  as required.) 
The three terms were needed in (42)  because an arbitrary constant B is allowed in 

the solution of the symmetric inner problem; thus, we need three conditions to 
determine the three constants, D,, A ,  and B. 

2.3.  Rejlection and transmission coeflicients 
If we substitute D, and D, into the definitions of R and T, (40) ,  we obtain 

ik(m - 1) 
R =  T =  

(1 -ikl) ( 1  - ikm) ’ 
1 + k21m 

(1 -ikl) (1 -ikm)‘ 

These formulae satisfy the energy conditions, (9) and (lo), identically. They reduce 
to Lamb’s formulae (23) ,  when m = 0, i.e. when r represents a thin barrier on the 
y-axis. 

For small circular cylinders of radius a we have 

7TU2 7 d  

2h 4h ’ 
l z - ,  m=-- 

were we have used (20), ( 2 4 ) ,  (57)  and (60). Prom ( 6 3 ) ,  

and 

37rika2 
R z ik(m-1) z -- 

4h 

inka2 
T z l+ik( l+m) x l+- 

4h ’ 

in agreement with the known correct approximation (34) .  

3. Discussion and applications 
The method described above is unusual in that the symmetric inner problem is not 

governed by the Laplace (or the Helmholtz) equation, but the Poisson equation. This 
arises because we need a function that grows like x2 to match with the last term in 
(42) ,  but there is no harmonic function that grows in this fashion and satisfies all the 
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boundary conditions (even when the protrusion is absent; x2 is not harmonic.) For 
a more systematic application of the matched-asymptotic-expansions method, see 
Appendix D. 

3.1. Circular cylinders 
Equations (63) agree with the known exact results for small circular cylinders of 
radius a. In  this case, we can also find an explicit approximation to $,, the inner 
symmetric solution : 

$s(x ,  y )  = “-1 2h2 4 (Ey h log [ 2 (cosh @) - cos e))]. (67) 

This function satisfies h2V2$, = 1 in the fluid, (68) 

($,), = 0 on the plane walls, (69) 

Moreover, 

whence, from (54) and (60), we see that we have agreement with the exact value for 
m, given by (64). Thus, 3, is an approximation to $, in that the boundary condition 
on r is only satisfied on average, (70). 

For larger circular cylinders, we can still use (63), with m given by (64), provided 
we can compute the blockage coefficient 1. An approximation to 1 can be obtained by 
using a conformal mapping due to Richmond (1923); see also Smythe (1968, $4.28). 
This approximation is (see Appendix C) 

(72) 1 x - log (seep), 
a 

P 
where P depends on a/h and is a solution to the following equation: 

xaP log(secP+tanP) = -. 
h (73) 

(74) 
xu 

x %. For small P, this equation gives 

Thus, for small a/h, (72) gives 
a nu2 
P 2h 

1 = - log (1 +$/32) x &3 x -, (75) 

in agreement with (64). Table 1 provides values of p for various values of a/h, 
together with values of E/h computed from (72) and from the approximation, (64). 
From the table, the small-cylinder approximation (64) underestimates Richmond’s 
values by over 10% for a/h > 1/3. 

3.2. Small elliptical cylinders 
We can reverse the above procedure and obtain an approximation for 1 for small 
elliptical protrusions by comparing (63) with the exact results derived by Burke & 
Twersky (1966). For an ellipse defined by 
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a l h  
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

P 
0.3116 
0.608 3 
0.877 4 
1.1095 
1.298 5 
1.440 2 
1.5305 
1.567 3 
1.570 795 7 

l l h  
0.0158 
0.0650 
0.1530 
0.291 8 
0.5056 
0.8492 
1.4692 
2.8825 
8.1833 

Mm2 
0.0157 
0.0628 
0.1414 
0.251 3 
0.392 7 
0.5655 
0.7697 
1.005 3 
1.2723 

TABLE 1. The blockage coefficient for an approximately semicircular protrusion of radius a in a 
channel of width h, computed using Richmond’s conformal mapping (73). The fourth column gives 
the approximation (64) derived for small a/h. 

they obtain (their equation 63) 

inka inka2 
R - - -  (a+2b), T -- 

4h 4h (77) 

for long waves and small cylinders. From (63), we have 

R - -ik(Z-m), T - 1 +ik(E+m). (78) 

Comparing (77) and (78), we can solve for 1 and m to give 

and 

na 
1 = - (  4h (79) 

This equation for m agrees with the exact result, given by (57) and (60). The 
expression for 2, (79), reduces to (64) for circles ( a  = b ) ,  vanishes when a = 0 (i.e. when 
the ellipse vanishes) and gives 

when b = 0 (i.e. when the ellipse degenerates into a small vertical barrier of height a).  
The approximation (81) also agrees with the exact result for a vertical barrier, 

I = n log {sec 6)) 
as given by Lamb (1932, $306). These results will be used in $5.  

3.3. Small cylinders of arbitrary symmetric cross-section 

Miles ( 1 9 8 2 ~ )  has given formulae similar to (63) for the scattering of long waves by 
a grating of small vertical cylinders. He considers asymmetric cylinders and oblique 
incidence. If we specialize his results to symmetric cylinders and normal incidence, 
we obtain 

ikr I -+k2(r2-t2) 
R =  T =  

1 - ikt + +kz(r2 -t2) ’ 1 - ikt + ;k2(r2-- t 2 )  ’ 
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where 1 1 
4h 4h 

r = -- ( 4 S + d ) ,  t = -atd. 

The quantity d is the added mass of a single cylinder (r and its reflection in y = O),  
translating with constant speed U in the x-direction in an otherwise unbounded 
incompressible fluid of unit density. The fluid is a t  rest a t  CO, and its kinetic energy 
per unit length is $J2d ; explicitly, 

d = 2 $ m ~ , d s ,  (85) s, 
where VZ$, = 0 in the fluid, ($,+x), = 0 on the cylinder and I#,I + O  at  00 (Lamb 
1932, $121). 

If we compare Miles’s result (83) with our (63), we find that they agree precisely 
if 

1 
4h 1 = - ( 2 S + d ) ,  (86) 

after using (57) and (60). This is an approximation to the blockage coefficient 1,  valid 
for small protrusions. For the ellipse, (76), d = na2, 25 = nab, and (86) reduces to 
(81). Note that our formulae (63) do not require that the protrusion be small. 

The above approximation (86) is consistent with a known exact result, connecting 
1 to the added mass of the cylinder in a channel, atc: 

1 
4h 

1 = - (2S+dc) .  

This equation is given by Sedov (1965, p. 146, eq. 8.6) and Newman (1969, eq. 3.4), 
and will be used in $5.3. In  our notation, we have (cf. (85)) 

4. Scattering of water waves by horizontal cylinders 
The matched-asymptotic methods discussed in the previous sections on acoustic 

waves will now be applied to water waves impinging on a long horizontal cylinder 
fixed in the free surface ( y  = 0 )  or a t  the bottom ( y  = h). (For convenience, cylinders 
fixed in the free surface are termed ‘floating’ below). The cylinders are in a channel 
of constant (finite) depth h. As before, the surface of the cylindrical obstacle will be 
denoted by F, which is assumed to be symmetric about x = 0. The cylinder has width 
2 b :  if it is floating, L denotes the length of the mean water level intersected by the 
cylinder ( y  = 0, 1x1 < b ) ;  if i t  is a ridge or a trench, L is a segment, y = h, 1x1 < b.  

The incident wave will have a velocity potential 

p ( x , y )  = Y ( y )  eikz, (89) 

where 
cash k ( h - y )  

’(’)= coshkh ’ 

k is the unique positive real root of 

K = k tanhkh, (91) 
16 FLM I88 
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K = w 2 / g  and g is the acceleration due to gravity. The total velocity potential # 
satisfies 

(92) 

(93) 

(94) 

(95) 

V2# = O  in the fluid, 

K#+#, = 0 on the mean free surface ( y  = 0 ) ,  

#,, = 0 on all rigid boundaries, 

#“ = # - #in satisfies a radiation condition as 1x1 +- to . 

We write the radiation condition, (95), as 

I Yfy) T eikx 

1 ~ ( y )  (eiks + R elk”) as x + - to , 

\Y(Y)  (T - 1) elks 

as x+ 00, 
# -  

as x+ to, 

as x+-to. - I Y ( y )  R eikx 
or, equivalently, as 

As before, the reflection coefficient R and the transmisson coefficient T must satisfy 
(7 )  and (8) (or (9) and (10)); see e.g. Newman (1977) or Martin (1985). 

4.1 Simple matching procedure for shallow-water waves 

The second method, described in $2.1, has been used to treat the water-wave problem 
posed above, for the case of long waves; see Guiney et al. (1972), Tuck (1977), and 
Miles (1982b). The procedure is reviewed below. 

Assume that Kb and K h  are both small; from (91), we have 

kh z (Kh); 4 1. (96) 

Therefore, from (go), Y ( y )  M 1. So, we take (26) as an outer solution; its inner 
expansion is (28), namely 

T + ikxT, x > 0, 

l+R+ikx( l -R) ,  x < 0, 
(97) 

as klzl+O, Let @ be an inner solution, satisfying (92) and (94). Since (96) holds, we 
can replace the free-surface condition, (931, by the ‘rigid-lid ’ condition 

@, = 0 on y = Q .  (98) 

In  order to match @ with (97), assume that 

(99) 
1x1 @ - @++x@; - as -+a, 
h - 

where @*, @: do not depend on x. Since all the boundaries are rigid, conservation 
of mass implies that 

where A is a constant. Thus, the inner solution corresponds to potential flow past an 
obstacle, r, in a channel; therefore, 

@> = @L = A ,  (100) 

@ = A@.,+B, 

where @., is the inner solution discussed in $2.1,  and B is an arbitrary constant; in 
particular, 

(x + 1 sgn x) A 
h 

+ B  @ -  as 1x1 + to 
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Matching this with (97), we obtain 
ikl 

1 -ikl 
R = 1-T = -~ 

477 

which is (23). We observe that this formula does not distinguish between a floating 
cylinder and a cylindrical bottom ridge, when both have the same cross-section. 

The argument used above is incomplete. The result is correct for submerged ridges 
and trenches, but not for floating cylinders. One defect is in the imposition of 
the 'rigid-lid' condition, (98), for this implies (loo), which in turn implies that 
R+T = 1 ;  in general, this is too restrictive: (9) gives merely that IR+TI = 1. The 
rigid-lid condition is only one approximation to the exact free-surface condition, 
(93). We shall exploit this observation in the next section. Again, see Appendix D 
for a more formal derivation. 

4.2. Modified matching procedure 

As before, we separate the scattering problem into two problems, one symmetric and 
one antisymmetric about x = 0. We have 

& = iY(y) sin kx, &" = Y(y) cos kx. 

q5r = D, Y(y) sgnx eiklsl, $? = D, Y(y) eiklzl. 

(101) 

In  the outer region, we write 

(102) 

Comparing with (4), we see that R and T are given by (40). The inner expansion of 
the outer solutions are 

4,- Y ( y ) [ D a s g n x + ( l + D ~ ) i k ~ ] ,  (103) 

q5s - y(y) [(I + D,) +ik(x(D,-a(l+ D,) k2x2] (104) 

as klxl+ 0 ; for small kh, these simplify further to 

4, N D, sgn x + (1 + D,) ikx, 

q5, N ( I  + D,) + ik[x)D, - $k2( 1 + D,) (x2 - y2 + 2hy). 

(105) 

(106) 

4.2.1. Determination of D, 

harmonic function defined in g2.l .  Matching with (105), we obtain 
The antisymmetric inner solution is a,, given by @a = Aa@,, where @, is the 

ikl 
1- ik l '  

D, = - 

as before, where 1 is the blockage coefficient. 

4.2.2. Determination of D, 
We now assume that we can write our symmetric inner solution as 

@, = A,$ ,+B.  (108) 

We require @, to satisfy (92) and (94). The free-surface condition (93) gives 
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For shallow-water waves, (96) ,  we can neglect the first term. The last term may not 
be negligible; in fact, if the last term is 0(1), then the rigid-lid approximation (98) 
is invalid, and must be modified to in5lude the surface velocity induced by the 
presence of the cylinder. So we require $, to satisfy 

(110) h($& = 1 on the free surface. 

It is convenient to write $s as 

$4 = x:+x,’> 

where 

and x,’ satisfies Laplace’s equation in the fluid and the following boundary 
conditions 

(xi), = 0 on both the free surface and the flat bottom, (113) 

(x3, = -(x:), on r3 (114) 

We can find N exactly, using Green’s theorem: 

since x,” is harmonic. There are now two cases. 
(i) If r corresponds to a ridge or a trench, L is part of y = h, on which 

(x,”), = -(x,”), = 0. (117) 

Therefore, N = 0. The same result obtains if r is a closed curve (submerged 
cylinder). 

(ii) If r corresponds to a floating cylinder, L is part of y = 0, on which 

1 
(x3, = (A!:), = h’ 

b N = - -  
h’  

giving 

were 2b is the width of the cylinder a t  y = 0 (this is the length of L). 
The outer expansion of @,, (108), is 

where we have defined n by 

Matching (106) and (120) gives 

n = Nh. 

nA A 
1 + D, = B, iED, = 3, -$(l+ D,) k2 = 2. 

h2 2h2 

Hence, 
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Note that A ,  is small, as required; also, for ridges and trenches D, = 0, whereas 
D, does not vanish for floating cylinders. 

4.3. Rejlection and transmission coeflcients 

Substituting (107) and (122) into (40), we obtain 

ik(n - 1) 1 + k21n 
R =  T =  

(1-ikl)(l-ikn)' (1-ikl) (1-ikn)' 

These formulae satisfy the energy conditions, (9) and (lo), identically. Furthermore, 
as the waves become very long, R and T approach zero and unity, respectively, which 
is expected for very low-frequency motions, which would have time to  completely 
pass the obstacle over a wave period. 

For ridges and trenches, (117) and (121) show that n = 0, so that (123) reduce 
to _ _  

1 T = -  
1 - ikl ' 

ikl R=-- 
1 - ikl' 

These formulae were also obtained by Miles (1982b). If kl is small, these coefficients 
can be further approximated by 

R x -ikl, T x li-ikl. (125) 

These last approximations were given by Tuck (1977) and Miles (1982b); the 
approximation JRJ z LJZJ was earlier obtained by Kreisel (1949). 

For floating cylinders, n = -b,  whence (123) reduce to 

1 - k21b 
T =  

ik(l+ 6 )  
(1 - ikl) (1 + ikb) ' 

R = -  
(1 - ikl) (1 + ikb) . 

These approximations are new. For small cylinders, they give 

R x -ik(l+b), T x l+ik(l-b). (127) 

I n  the next section, we give some independent verification of the reflection and 
transmission coefficients given by (123). 

5. Discussion, verification and applications 
For ridges and trenches, our approximations for R and T ,  (123), reduce to formulae 

obtained previously by other authors (who have used incomplete arguments). Our 
formulae were derived under the assumptions that Kb 4 1 and Kh < 1. Also, we 
implicitly assumed that if the obstacle was a trench, then it was not too deep 
(because the free-surface condition above the trench was approximated). Under 
these assumptions, i t  is known that the formulae for R and T agree well with exact 
solutions; see e.g. Kirby & Dalrymple (1983) for rectangular trenches. For thin 
vertical barriers, whether surface piercing (b = 0) or not, we also obtain (124). Tuck 
(1975, fjVII1.C) has verified that these agree with the exact solution by Packham & 
Williams (1972). 

We now consider three special geometries, corresponding to semicircular, 
rectangular, and elliptical cylinders. 
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5.1. Half-immersed circular cylinder and semicircular ridge 
For small semicircular obstacles of radius a we can use a hydrodynamic analogue of 
Lewin’s ‘ multiplet ’ theory (Appendix A). I n  this theory, the scattered waves are 
approximated by 

where &l(82) is the potential due to a wave source (horizontal wave dipole) a t  the 
centre of the semicircle, and A, and A, are constants to be determined by imposing 
the boundary condition (94) on r. When this is done, we obtain (124) for the ridge, 
and (126) (with b = a )  for the floating cylinder; in each case, l = $a2/h. See 
Appendix B for details. 

We can also compare our results with the numerical results of Naftzger & 
Chakrabarti (1979), obtained by solving an integral equation over r (in principle, 
their results are exact). They give graphs of 1RJ as a function of ka, for several values of 
alh and for both the ridge and the floating cylinder. For example, when a / h  = 0.25 
and ka = 0.1, we can estimate from their figures 5 and 14 that IRI x 0.14 for a floating 
cylinder and JRJ x 0.04 for a ridge. According to our approximations ((125) and 
(127)), these two numbers should differ by ka, as they do. Moreover, for the ridge, 

qPC = KhA, + &A2 62, (128) 

(125) gives 
XkU2 
2h 

IRJ x kl x - x 0.04, 

in agreement with the graphical estimate. 
For larger cylinders, we can use the approximation to 1 given by (72). In  particular, 

for alh  = 0.5 and ka = 0.1, we obtain kl x 0.11 from table 1, whence IRI x 0.21 for a 
floating cylinder and IRI x 0.11 for a submerged ridge. The corresponding estimates 
from Naftzger & Chakrabarti (1979) are (Rl x 0.19 and JRI x 0.11. 

5.2. Half-immersed elliptical cylinder and semi-elliptical ridge 
For small semi-elliptical obstacles, of width 2b and height a, the blockage coefficient 
1 is given by (79), whence (125) gives 

for a ridge, whereas (127) yields 
ikxa 
4h 

R--- (a+ b) -ikb 

129) 

130) 

for a floating cylinder. In  particular, for vertical barriers of height a (b = 0) both 
formulae reduce to 

When a = 0, the floating cylinder reduces to a finite dock, of width 2b. In  this case, 
(130) gives 

R x -ikb. (132) 

In  fact, 1 = 0, and so (126) yields 

1 
7’ X ___ 

1 filcb’ 1 +ikb‘ 
ikb RX--- (133) 



Scattering of long waves by cylindrical obstacles and gratings 481 

This problem has been solved by Stoker (1957, pp. 430-433), using shallow-water 
theory. He obtains 

ikb e-Zikb e-2ikb 

R x -  T Z -  
1-ikb ' 1 - ikb ' ( 1  34) 

It is easily verified that, for small kb, (133) and (134) agree with an error of O((kb)3). 

5.3. One rectangular obstacle 
Mei & Black (1969) have obtained results for waves impinging on rectangular 
cylinders, using Schwinger's variational method and they have given graphs of IRI as 
a function of a dimensionless wavenumber, for several geometries. 

For a rectangle with width 2b and a height d ,  the blockage coefficient 1 is given by 
(88) (with dc = h,/p) as 

- = I + -  lh A, 
bd 4pbd' (135) 

where p is the density of the fluid and hJ(4pbd) is the added-mass coefficient for the 
rectangle (see e.g. Taylor 1973). This coefficient has been tabulated by Flagg & 
Newman (1971) for various values of b/d and dlh .  

Two comparisons will be made. For a rectangular ridge, let H = h-d, the depth 
of water above the ridge. For b = 2H and h = 2H, we can estimate from figure 2 of 
Mei & Black (1969) that 

IRI - 2.5kH as k H + 0 .  (136) 

From (125), we predict that 

Now, since b/d = 2,  d / h  = + and h/H = 2 ,  we have 1/H = lh/bd = 2.4997, where we 
have used (135) and table 1 from Flagg & Newman (1971). Thus, we have good 
agreement. 

For a floating rectangular cylinder, Mei & Black (1969) have plotted IRI as a 
function of kd( = k H ) ;  for b = d and h = 2d, we estimate that from their figure 6 
that 

From (127), we predict that 
IRI - 2.5kd as kd-+0. (138) 

(139) IRI - k(l+b) = Icd('+ b, as Ed -+ 0. 

Now, again using table 1 from Flagg & Newman (1971), we have 

"=(-)( lh b )+-=:(1.9992+1)+1 b x 2 . 5 .  
d b d h d  

It is clear that (138) agrees very well with (139). 
For a very small gap between a floating rectangular object of width 2b and the 

bottom, the asymptotic formula of Flagg & Newman for the blockage coefficient can 
be used: 

b 2h 2h 
I % -+- - b - - l o g 4 ~ + 0 ( ~ ~ ) ,  

€ ' I t  'It 
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where he is the gap width. Using only the leading term in (141) for a small gap, our 
formulae (123) for the reflection and transmission coefficients give 

ikb( 1 + E )  
R = -  T =  

(E-ikb) (1  +ikb) '  
E - k2b2 

( E  - ikb) (1  + ikb) ' 

5.4. An aperture in a thick wall 
Guiney et al. (1972) have considered the transmission of waves through a small 
aperture in a thick wall, for both deep and shallow water. In the latter case, for a 
thick, surface-piercing barrier, they have incorrectly obtained Lamb's formulae (23). 
Our formulae (123) are applicable to an arbitrary-shaped symmetric (in x) aperture. 
If we consider the case of a bottom-mounted cylinder directly beneath an identical 
inverted surface-piercing cylinder, then the blockage coefficient is the same as for a 
single cylinder in a channel of width ih. For a pair of rectangular cylinders, each of 
width 2b and height i d ,  separated by a gap of h-d, we can compute 1 using the 
results in Flagg & Newman (1971). For a small gap, we can use the leading term in 
the asymptotic approximation for I ,  (141), and we find the reflection and transmission 
coefficients given in (142). Thus, for shallow-water waves, the reflection and 
transmission coefficients for a gap of width h - d are asymptotically the same for the 
gap placed in the middle of the wall as they are for the gap a t  the bottom of the 
wall. 

The first author is grateful to the Department of Mathematical Sciences, University 
of Delaware, for its hospitality, and acknowledges the receipt of a Fulbright Travel 
Grant. The second author would like to acknowledge the partial support provided by 
the U.S. Army Corps of Engineers Coastal Engineering Research Center. Both 
authors are indebted to J. T. Kirby (who suggested the explanations given by (48) 
and (log)), A. F .  Messiter (Appendix D), J. N. Newman and E.  0. Tuck for their 
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Appendix A. An approximate theory for scattering from a cylindrical 
grating 

cylinder is a t  On, with coordinates x = 0, y = 2nh. Assume that we can write 
A row of circular cylinders is located along the y-axis. The centre of the nth 

m m 

qYc x A ,  C HC)(kR,)+iA,  C H!')(kR,) COSB,, (A 1 )  
n--m n=-m 

where x = R, C O S ~ , ,  y-2nh = R, sin On, (R, and On are polar coordinates centred 
on On) ,  and A ,  and A ,  are constants to be determined. Thus, we have approximated 
qPc throughout the fluid domain by identical wave sources and x-directed dipoles a t  
On, n = 0, 1,  k 2 ,  ... . From Twersky (1961), we can write (A 1) as an infinite series 
of plane waves, some of which are propagating and some of which are evanescent as 
1x1 + 00. In particular, if kh < TC, there is only one propagating wave and, if 1x1 is 
also large, we obtain 

(A 2) - (khf-' (A,  +Al  sgn x> eikJzl as 1x1 + co. 

Comparing with (6), we see that 
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We now determine A ,  and A ,  by imposing the no-flow boundary condition (3) on the 
cylinder. We assume that the potential near any cylinder is approximately due to the 
source and dipole at its centre only;  it is here that we use the fact that a /h  4 1. Near 
the central cylinder (n = 0 ) ,  we have 

qPC M A,H,(kR)+iA,H,(kR) cos8, (A 4) 

where R = Ro and 8 = 8,. Also, the incident wave is given by 

a, 

qP' = eikx = C en inJn(kR) cosn8 

M J,(kR)+SiJ,(kR) cos8. 

n=O 

We require that (qP+qP'), = 0 on R = a 

from which we obtain the following two relationships: 

A,Hh(ka) +Jh(ka) = 0, 

A1H;(ka)+2J;(ka) = 0. 

For small ka, we can approximate the Bessel and Hankel functions to give 

A ,  z A ,  x $in(ka)2. 

When these are substituted into (A 3), we obtain (34). 

Appendix B. Semicircular obstacles : simple multipole approximations 

in water of depth h is (see e.g. Ursell 1981). 
A Green function for the velocity potential a t  (x, y )  due to a wave source a t  (t, 7) 

coshK(h-9) coshK(h-7) c O S K ( Z - E )  -'f coshKh(K sinhKh-K coshKh) dK, (B 1) 

where the contour is indented below the simple pole of the integrand at K = k ,  and 
k is the unique positive real root of (91). For fixed t ,  

G - -2niEY(y) Y(7)  eikix-~l as lxl+ 00, (B 2) 

where Y(y) is defined by (90) and 
2 cosh2 kh 

2kh + sinh 2kh ' 
E =  

B. 1. Elementary solutions 
We shall need to use some simpler functions derived from the Green function. 

Wave source at origin (0,O) 
Define & = - -  2 ;Gx,Y;O>o) ( 
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For small Kh and r / h  ( r2 = x2 + y 2 )  we have (Ursell 1976) 
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Re( G2) - -log r .  

Also, Im($.,) = n ~ ~ ( y )  coskx. 

Horizontal wave-dipole at (0,O) 
Define 

1 -  
61 = -z (@Ax 

K cash K(h-y) sin K X  k 
K 

dK + ni - E Y(y) sin kx 
= s,, K ( K  sinh K ~ - K  cosh ~ h )  

k 
K 

- n sgnx - E Y ( y )  eiklsl as 1x1 -+ 00 

For small K h  and r l h ,  we have 
sin 0 

Re(&;,) - - 
Kr ' 

where x = r sine, y = r cos8. Also, 

k 
Irn(G1) = 7c - E Y ( y )  sin Ex. 

K 
Wave source at (0, h)  

Define 

sinh ICY sinh Kh =-$log x2+(y--h)2+J: e--Kh 

cosh K (  h - y) cos K X  
+ cosh K ~ ( K  sinh K ~ - K  cosh ~ h )  

cos K X  d K  
x +(y+h)2 K cosh K h  

d K  

N niE sech khY(y)  eiklzl as 1x1 +- 00. 

x z + ( ~ - ' f L ) 2  for o < y < h, 
COS K X  

K 
sinh KY - dK = - $ log 

x2 + ( y  + h)2 
Since lom e-kh 

we can write the second term as 

whence 

for small Kh and rJh, where r: = ~ ' + ( y - h ) ~ .  Also, 

Re( 6;) - -log r l  

Im(@) = nE sech khY(y)  cos kx. 

Horizontal wave dipole at (0, h)  

Define 
1 &! = -% (@), 

k 
K 

- sgn x n  - E sech EhY(y) eiklxl as 1x1 --f co. 
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Re(@) - -, 
485 

sin 8, 
0321)  

For small Kh and r J h ,  

K r ,  

where x = rl sin 8,, h-  y = rl cos 8,. Also, 

(B 22) 
k 
K 

Im(@) = n - E sech k h Y ( y )  sin kx. 

B.2 .  Half-immersed circular cylinder, radius a, centre (0,O) 

Using the above elementary solutions, we treat the case of a floating cylinder. 
Assume that the scattered potential can be written as 

#" = K h A ,  GI + K ~ A ,  6z (B 23) 

- nkhEY(y) (sgnxA,+iA,) eiklsl as JxI+ 00,  (B 24) 

whence, comparing with ( 4 ) ,  T -  1 = xkhE(A,+iA,) (B 25)  

and R = xkhE( -Al+ii12).  (B 26) 

T - 1  z$T(A,+~A,),  R 2 ;n(-A,+iA,). (B 27) 

$ = p+p (B 28) 

For small K h ,  E - (2kh)-', whence 

Now, to obtain the solution we have 

h 
r 

- -A1s in8-khA, logr+i (~xA,+1)Ysinkx+(~niA,+1)  Y coskx, (B29) 

and the angular brackets require setting r = a after the differentiation with respect 

These equations give -nkhA,+ (;niAz+ 1 )  Is(8)d8 = 0 1:. 
and - xh 

2a 
- - A ,  + i(inAl + 1 )  la(8) sin 8 d8 = 0. 

(B 33)  

(B 34) 

Green's theorem shows that 

(B 35) 

;n7ciA, 2 --. (B 36) 

(B 37) 

2K 
k 

Is(8)d8 = -- sinka x - 2 K a  2 -2k2ah, 

ika 
1 + l kU 

ikl 
;nA1 2 7, 

1 -1k2 

whence (B 33) gives 

Since Ia  - ka sin 8, (B 34) gives 
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where 1 is the blockage coefficient for small circular cylinders, given by (20) and (24). 
Substituting (B 36) and (B 37) into (B 27), we obtain 

and 

ik1 ika 
1 -ikl 1 +ika 

ikl ika 
1-ikl 1 + i k a  

R % 

T-l%--- 

in agreement with (123), for this special geometry. 

B.3. Semicircular ridge, radius a, centre (0, h) 

qhsc = KhAf 6: + khAE @, Assume that 

whence, for small Kh, 

(B 39) 

T-1 % $ ~ ( A f + i q ; ) ,  R % $ ( - A : + i A ; ) .  (B 41) 

We proceed as before, differentiating with respect to r l ,  setting rl = a and imposing 
(B 32), integrating over O1. The only difference occurs when we evaluate 

a( Y ( y )  cos L x ) , ~  do, = - Y'(h) cos LX dX = 0, (B 42) 

since Y'(h) = 0. Hence Af = A,,  A;  = 0. (B 43) 

L 
Substituting these into (B 41), we obtain the same formulae as (124), for this special 
geometry. 

Appendix C. The blockage coefficient for large circular cylinders 
Richmond (1923) has investigated the conformal mapping given by 

- (C 1) 
dz - P(w-c)i+Q(w- 1); 
dw &(w- i ) ~ ( w - c ) ~  1 ,  

- 

where c > 1, P and Q are constants. This maps one half of the channel, as shown in 
figure 1 (a ) ,  onto the upper half of the w-plane (Figure 16) .  This is mapped onto a 
uniform channel in the c-plane (figure 1c)  by the mapping 

d5- S - 
dw wi(w-I)i '  

In order to make both channels have width h, we set 

and 

n:(P+Q) = h 

7th' = h. 

Integrating (C 1) gives (C 5 )  

and z = 2P cosh-l (d) a t  D. (C 6) 

a = 2 P  cosh-l (secb) = 2QP (C 7) 

z = 2iQ COS-~($) a t  C 

If CD is to be a quadrant of a circle, with radius a ,  we obtain 
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A B C D  E 

--to 0 1 c  03 
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FIGURE 1. (a )  Quadrant in a channel, in the z = s + i y  plane. ( b )  Mapping on w-plane, as given by 
(C 1 ) .  (c) Mapping on [-plane, as given by (C 2). 

from (C 5) and (C 6) ,  were we have defined an angle p by 

secp = ci. (C 8) 

Thus, given a / h ,  we can determine P/h,  Q/h,  and p from (C 3) and (C 7). Eliminating 
P and Q, we obtain a single equation, (73), for p. Richmond has determined p for 
various values of a/h .  He has also shown that the actual curve CD departs from a 
circular arc by a maximum of 2 %  for a / h  = 0.5 and 11 YO for a /h  = 0.75. 

In  order to calculate the blockage coefficient 1 for uniform flow past a semicircular 
protrusion, we must examine the behaviour of 

# ( z )  = Re(S(z)) as X + + O O .  (C 9) 

(C 10) 

From (C 1) and (C 2), we have 

z = 2P cosh-' (wi) +2Q cosh-' (w; cosp)  

and 5 = 28 cosh-' (wi) (C 11) 

z = 2(P+Q) cosh-'(w;)+2Q log(cosp)+O(w-') 

5 N 2-2Q log ( c o s ~ ) ,  

for w > c. For large w (i.e. near E), (C 10) gives 

(C 12) 

(C 13) 

as w-t 00. Hence, using (C 3), (C 4) and (C ll),  we obtain 
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whence, comparing with (31), and using (C 7) ,  we obtain finally 
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a I =  2&log(secP) =-log(secP). 
P 

Appendix D. Asymmetric cylinders : a systematic approach 
Another approach to our modified matched-asymptotic-expansion method has 

been provided by A. F. Messiter. The technique involves assumed power series for 
D, and D, in terms of kh. 

D. 1. Acoustics 

The systematic approach, using powers of kh, shows how the Poisson equation 
arises. One advantage of the approach is that the cylinder need not. be symmetric 
about x = 0. The amplitudes D, and D, in (39) depend on kh; assume that 

D, = C a,(ikh)", D, = C P,(ikh),, (D 1)  
n=1 n=1 

where the coefficients an and p, do not depend on kh. The leading terms a1 and p1 
can be obtained as follows. The inner expansion of the outer solution is 

$ = eikx + (D, + D, sgn x) eiklsl (D 2) 

(D 3) 
- 1 + (ikh) {z+ (a1 +pl sgnx)}- (kh)' + 14 (al +pl sgnx) + (az +p2 sgn 2)) 

as klxI+O, where D = x/h and y = y/h are the inner variables. In  the inner region, 
suppose that 

$ = 1 + (ikh) $ 1 ( ~ ,  y) - (kh)' $2(Z, y) - . . . , (D 4) 

whence (2) implies that  ($I)=+ = 0 

and ($z)=+ ($A, = 1, 

together with boundary conditions on the walls. In  order to match with outer 
solutions we require that 

$l(Z,Y) - z+(a,+P, sgnx) 

$ 2 ( ~ ,  g )  - $9 + 1 ~ 1  (al +/I1 sgn 2) + (az +p2 sgn x) 

(D 7) 

(D 8) and 

as 1.1 + co. A comparison of 41 with +, shows that 

$1(z> Y) = +,(Xi Y )  +a,, (D 9) 

whence (31), (D 4) give 
1 
h' 

p = -  

To obtain ct,, we must use properties of $ z .  Thus, 
to $z  (as in 92.2.2) gives 

(D 10) 

a conservation argument applied 

i.e 
m 

a,  = -. 
h 
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(For symmetric cylinders, we see that 

$z(z, Y) = $s(x, Y) +PI $a(x, Y) + a29 
whence (52), (54), (60) and (D 8) give (D 12) and also 

Substituting (D 10) and (D 12) into (D 1)  gives 

D, x ikha, = ikm, D, x ilchp, = ikl, 

in agreement with (46) and (62), to leading order in Eh. 

D.2. Water waves 
A similar calculation succeeds for shallow-water waves. The inner expansion of the 
outer solution is 

4 = Y(y) {eikz+ (D,+ D, sgnx) eiklzl} (D 16) 

+I4 (%+PI Sgnx)+(%+Pz s g n 4  (D 17) 

- 1+ikh(z+(al+/3, sgnx)} -(kh)2{+(X'L-yz+2Y) 

as klxl +0, where D, and D, are given by (D 1). In  the inner region, we assume that 
(D 4) holds. Now, dl and $ z  are both harmonic, but the free-surface condition, (93) 
and (91), gives 

(D 18) (411, = 0, = 1 

on y = 0. Similar arguments now show that 

1 n 
h 

a1 =-! P1 = h '  

(Indeed, we have (D 9) and, for symmetric cylinders, $ z ( ~ ,  y) = $,(x, y) + 
P1$,(x,y)+az.) If we substitute (D 19) into (D l ) ,  we obtain agreement with (107) 
and (122), to leading order in kh. 
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